

Tetrahedron Letters 40 (1999) 6439-6442

4-Chloro-5*H*-1,2,3-dithiazol-5-one: a good α -thiocyanating agent for α,β -unsaturated β -amino esters

Young Seok Park and Kyongtae Kim*

Department of Chemistry, Seoul National University, Seoul 151-742, South Korea

Received 17 May 1999; revised 14 June 1999; accepted 15 June 1999

Abstract

Treatment of 4-chloro-5*H*-1,2,3-dithiazol-5-one with 3-alkyl (or aryl)-3-amino-2-propenoate esters in DMSO at 120°C gave the corresponding 2-thiocyanated esters 4 (major) and 5-alkoxycarbonyl-4-alkyl (or aryl)-4-thiazolin-2-ones 5 (minor), whereas the esters bearing a strong electron-withdrawing group at C-3 under the same conditions afforded 5 and/or 4-substituted 5-alkoxycarbonyl-2-aminothiazoles 6, depending on the electron-withdrawing groups. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: 4-chloro-5H-1,2,3-dithiazol-5-one; (E)-3-amino-2-thiocyanato-2-butenoate; 4-substituted 5-alkoxycarbonyl-2-aminothiazoles.

Thiocyanation of alkenes has been mostly achieved by treatment with in situ generated thiocyanogen [(SCN)₂] or thiocyanic acid.¹ Thiocyanated compounds are useful for the synthesis of 4,5-disubstituted 2-aminothiazoles, which are invaluable intermediates for the preparation of other thiazole derivatives.² However, the extreme sensitivity of thiocyanogen toward hydrolysis and polymerization as well as toxic effects limits its general use in many organic reactions.

In a continuation of our ongoing project for exploring the synthetic utility of 4-chloro-5H-1,2,3-dithiazoles, 4-chloro-5H-1,2,3-dithiazol-5-one (1a) was treated with ethyl 3-amino-2-butenoate (2a) in DMSO at 120°C with the expectation of forming a compound analogous to N-alkyl- and N,N-dialkylcyanothioformamides (3), which were prepared from 4-chloro-5H-1,2,3-dithiazole-5-thione (1b) and primary and secondary alkylamines.³ However, the reaction afforded (E)-3-amino-2-thiocyanato-2-butenoate (4a) and 5-ethoxycarbonyl-4-methyl-4-thiazolin-2-one (5a) in 60 and 38% yields, respectively (Scheme 1).⁴ Compound 4a was reported to be prepared by the reaction of 2a with (SCN)₂ in CH₂Cl₂ at 0°C in 78% yield.^{1c} The spectroscopic data and mp of 4a were in accordance with the literature. The stereochemistry of 4a was determined based on the chemical shift of the NH₂ protons situated at δ 5.65 and 9.29 ppm.

To the best of our knowledge, this is the first example of thiocyanation of the C=C double bond by an organic sulfur compound. Compound 1a is stable in the air and it can be readily prepared from

^{*} Corresponding author. Tel: 82 2 880 6636; fax: 82 2 874 8858; e-mail: kkim@plaza.snu.ac.kr

Scheme 1.

Table 1

Reaction times and yields of products 4, 5, and 2-aminothiazoles 6

Entry	R¹	R²	Time h	Pro	duct" (%)	L mb	Pro	duct" (%) 5	, mb	Pr	oduct ^e (%) 6°	_C wb
1	Ме	Et	0.5	2	60	112-114 ^g (lit. ^{1(c)} 114.5-115)	2	38	177-178 (lit. ⁷ 177-178)	2	(93)°	177-178 (lit. ⁹ 178-179)
2			3	2	61	,	2	22				
3	Me	Me	0.5	b	50	99-100	b	35	219-220 (lit.* 218-219)	b	(98)	224-226 (lit. ⁹ 231.5-233)
4	Me	t-Bu	1.5	c	30	87-88	b	13	169-170	c	(76)	173-174
5	Me	Allyl		ď	46	105-106	c	16	148-150	d	(92)	148-150
6	n-Pr	Et	0.5	ē	60	93-94	d	27	95-96	e	(100)	136-138
7	n-Pe	Et	0.5	f	70	Liquid	e	25	76-77	f	(100)	107-108
8	PhCH ₂ CH ₂	Et	0.5		71	132-133	ſ	26	134-135	2	(71)	120-122
9	CF,	Et	2	•						h	97	176-177 (lit. ¹⁰ 170-172)
10			5*	h	13	102-104				h	70	
11	2-FC ₂ H ₄	Et	2	ī	72	92-94	2	34	142-143	i	(100) ^r	153-156
12	3-O ₂ NC ₆ H		5	•			h	43	178-180	j	55`	228-229 ⁴ (lit. ¹¹ 228-230)

[&]quot;Isolated yields.

(entries 1-8) or rt (entry 11).

44 Reaction times were 36 h, 5 days, and 10 days, respectively.

4,5-dichloro-4H-1,2,3-dithiazolium chloride (Appel's salt) and either NaNO₃ or water with an excellent yield.⁵ The preliminary results obtained from the reactions of 1a with β -enamino esters are summarized in Table 1.

The reaction was found to be sensitive to the solvent. Thus treatment of 1a with 2a in THF at reflux gave 4a (14%) and 1,4-thiazine 8a (37%). ¹² Similarly the reaction with 2b gave 4b (47%) and 8b (21%) (Scheme 2). Treatment of 8a and 8b with m-CPBA in CH₂Cl₂ at room temperature gave sulfones $9a^{13}$ (39%) and 9b (40%), respectively.

The formation of compounds 4-6 may be rationalized as a nucleophilic attack of the enamino carbon $(\alpha$ -C) on S-1 of 1a, followed by extrusion of sulfur and chloride ion to give an intermediate 10, which tautomerizes to give a pair of stereoisomers (E)-11 and (Z)-11 (Scheme 3). The intramolecular nucleophilic attack of sulfur of (E)-11 on a cyano carbon to give an intermediate 12, followed by extrusion of CO gives (E)-4. Isomerization of (E)-4 yielding (Z)-4, followed by an intramolecular cyclization would

^b Reaction temperature: 70 °C. In addition to 4h and 6h, bis(2-amino-1-ethoxycarbonyl-3,3,3-(trifluoro)propenyl) disulfide (7)⁶ was isolated in 10% yield.

Number in the parentheses represents yields of 6, which were obtained from heating 4 and K₂CO₃ in THF for 1.5 days at either reflux (entries 1-8) or rt (entry 11).

²h Solvents for the recrystallization were CH₂Cl₂ and a mixture of CH₂Cl₂ and n-hexane, respectively. Other compounds were recrystallized from a mixture of EtOAc and n-hexane.

1a + 2
$$\frac{m \cdot CPBA, rt}{reflux, 60 \text{ h}}$$
 + $\frac{R_1}{R_2O_2C}$ $\frac{R_2O_2C}{S}$ $\frac{R_1}{S}$ $\frac{R_2}{S}$ $\frac{R_2}{S}$

give 2-aminothiazoles 6 via an imino compound 13. It is envisaged that a similar type of intramolecular cyclization occurs in the reactions for the formation of 2-imino-4-thiazolines from α -bromoketimines and KSCN, ¹⁴ 2-amino-2-thiazolines from phenylpropiolic acid chloride, amine, and KSCN, ¹⁵ and 2-aminothiazoles from enolizable ketones and NH₂SCN¹⁶ notwithstanding the isolation of α -thiocyanato enamines. Alternatively, the intramolecular cyclization of (Z)-11 would lead to 4-thiazolin-2-ones 5. It seems that hydrogen-bonding between the N-H proton and the carbonyl oxygen of (E)-11 may be responsible for the formation of a major product (E)-4.

In summary, we have developed a method for α -thiocyanation of β -amino α,β -unsaturated esters utilizing an organo sulfur compound, i.e., 4-chloro-5H-1,2,3-dithiazol-5-one without using (SCN)₂, HSCN, or inorganic thiocyanates. A study on the scope of this reaction is in progress.

Scheme 3.

Acknowledgements

The authors are grateful for the financial support by the Korea Research Foundation made in the program year of 1998.

References

- (a) Wood, J. L. In Organic Reactions; Bachmann, W. E.; Johnson, J. R.; Fieser, L. F.; Snyder, H. R., Eds.; John Wiley & Sons: New York, 1956; Vol. 3, Chapter 6, pp. 240-266. (b) Crow, W. D.; Leonard, N. J. J. Org. Chem. 1965, 30, 2660-2665.
 (c) Giffard, M.; Cousseau, J.; Gouin, L.; Crahe, M.-R. Tetrahedron 1985, 41, 801-810. (c) Tokumitsu, T.; Hayashi, T. Yuki Gosei Kagaku Kyokai Shi 1975, 33, 478-482; Chem. Abstr. 1976, 84, 17205c.
- (a) Metzger, J. V. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon: Oxford, 1984; Chapter 4.19, Vol. 6, pp. 236-331. (b) Dondoni, A. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F., Eds.; Pergamon: Oxford, 1996; Vol 3, Chapter 3.06, pp. 376-474.
- 3. Lee, H.-S.; Kim, K. Tetrahedron Lett. 1996, 37, 3709-3712.
- 4. Typical procedure: To a solution of 1a (249 mg, 1.62 mmol) in DMSO (10 mL) was added ethyl 3-amino-2-butenoate 2a (839 mg, 6.50 mmol). The mixture was heated for 20 min at 120°C. The reaction was continued until no spot corresponding to 1a had been observed on TLC (silica gel, EtOAc/n-hexane=1:4). The reaction mixture was cooled to rt, followed by addition of water (50 mL), which was extracted with CH₂Cl₂ (30 mL×3). The extracts were dried over MgSO₄. After removal of the solvent, the residue was chromatographed on a silica gel column (70–230 mesh, 3.5×20 cm). Elution with a mixture of EtOAc and n-hexane (1:4) gave unreacted 2a. Subsequent elution with the same solvent mixture (1:2) gave ethyl 3-amino-2-thiocyanato-2-butenoate (4a) (182 mg, 60%): mp 112–114°C (CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 1.36 (t, J=7.2 Hz, 3H), 2.40 (s, 3H), 4.23 (q, J=7.2 Hz, 2H), 5.65 (s, 1H), 9.29 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.35, 23.29, 60.79, 75.94, 113.46, 160.30, 168.38; IR (KBr) 3408, 3288, 2128, 1658, 1616 cm⁻¹; MS (m/z) 186 (M⁺,71%), 141 (39), 113 (65), 87 (100). Anal. calcd for C₇H₁₀N₂O₂S: C, 45.15; H, 5.41; N, 15.04; S, 17.22. Found: C, 45.01; H, 5.22; N, 14.86; S, 17.24; and 5-ethoxycarbonyl-4-methyl-4-thiazolin-2-one (5a) (116 mg, 38%): mp 177–180°C (EtOAc-n-hexane); ¹H NMR (300 MHz, CDCl₃) δ 1.36 (t, J=7.2 Hz, 3H), 2.48 (s, 3H), 4.27 (q, J=7.2 Hz, 2H), 10.80 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.83, 61.75, 105.57, 142.65, 162.13, 174.53; IR (KBr) 3128, 1690, 1597, 1261 cm⁻¹; MS (m/z) 187 (M⁺,100%), 159 (53), 142 (59), 113 (65). Anal. calcd for C₇H₉NO₃S: C, 44.91; H, 4.85; N, 7.48; S, 17.13. Found: C, 44.95; H, 4.83; N, 7.43; S, 17.18.
- 5. Appel, R.; Janssen, H.; Siray, M.; Knoch, F. Chem. Ber. 1985, 118, 1632-1643.
- 6. Compound 7: yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 1.25 (t, J=7.1 Hz, 6H), 4.15 (q, J=7.1 Hz, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 14.55, 61.65, 93.79, 120.43 (q, J=278.63 Hz), 152.48 (q, J=29.89 Hz), 170.08; IR (neat) 3424, 2280, 1654, 1594 cm⁻¹; MS (m/z) 428 (M⁺, 22%), 215 (47), 169 (89), 141 (100), 122 (16). Anal. calcd for C₁₂H₁₄N₂F₆O₄S₂: C, 33.65; H, 3.29; N, 6.54; S, 14.97. Found: C, 33.54; H, 3.35; N, 6.53; S, 14.64.
- 7. Grohe, K.; Heitzer, H. Justus Liebigs Ann. Chem. 1973, 1018-1024.
- 8. D'Amico, J. J.; Fuhrhop, R. W.; Bollinger, F. G.; Dahl, W. E. J. Heterocycl. Chem. 1986, 23, 641-645.
- 9. Atkins, E. A.; Dabbs, S.; Guy, R. G.; Mahomed, A. A.; Mountford, P. Tetrahedron 1994, 50, 7253-7264.
- 10. Tanaka, K.; Nomura, K.; Oda, H.; Yoshida, S.; Mitsuhashi, K. J. Heterocycl. Chem. 1991, 28, 907-911.
- 11. Ohkubo, M.; Kuno, A.; Nakanish, I.; Takasugi, H. Chem. Pharm. Bull. 1995, 43, 1497-1504.
- Compound 8a: liquid; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (t, J=7.2 Hz, 6H), 2.21 (s, 6H), 4.20 (q, J=7.2 Hz, 4H), 5.40 (s, 1H); IR (neat) 3312, 3224, 3080, 2976, 1696, 1622, 1477, 1358, 1278 cm⁻¹; ¹³C NMR (75 MHz, CDCl₃) δ 14.68, 20.51, 61.35, 95.85, 150.30, 164.33. Anal. calcd for C₁₂H₁₇NO₄S: C, 53.12; H, 6.32; N, 5.16; S, 11.82. Found: C, 53.25; H, 6.46; N, 4.97; S, 11.55.
- 13. Compound **9a**: mp 167–168°C (CH₂Cl₂–n-hexane); ¹H NMR (300 MHz, CDCl₃) δ 1.33 (t, J=7.0 Hz, 6H), 2.47 (s, 6H), 4.32 (q, J=7.0 Hz, 4H), 9.11 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.55, 20.48, 62.33, 112.15, 150.30, 162.26; IR (KBr) 3296, 1704, 1666, 1619, 1491, 1243, 1117, 1072 cm⁻¹. Anal. calcd for C₁₂H₁₇NO₆S: C, 47.51; H, 5.65; N, 4.62; S, 10.57. Found: C, 47.29; H, 5.65; N, 4.61; S, 10.67.
- 14. De Kimpe, N.; Boelens, M.; Declercq, J. P. Tetrahedron 1993, 49, 3411-3424.
- 15. Rudorf, W. D.; Schwarz, R. Z. Chem. 1988, 28, 329-330.
- 16. Alvarez-Ibarra, C.; Quiroga Feijoo, M. L. An. Quim. 1990, 86, 418-430; Chem. Abstr. 1991, 114, 81633f.